10 research outputs found

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación.Postprint (published version

    Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    This is the peer reviewed version of the following article: Mendoza, F, Ferrus, R, Sallent, O. Experimental proof of concept of an SDN‐based traffic engineering solution for hybrid satellite‐terrestrial mobile backhauling. Int J Satell Commun Network. 2019; 37: 630– 645, which has been published in final form at https://doi.org/10.1002/sat.1303. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingSatellite networks are expected to be an integral part of 5G service deployment. One compelling use case is mobile backhauling, where the exploitation of a satellite component can improve the reach, robustness, and economics of 5G rollout. The envisaged availability of new satellite capacity, together with the development of better integration approaches for the provisioning and operation of the satellite component in a more flexible, agile, and cost-effective manner than done today, are expected to revamp such use case within the 5G ecosystem. In this context, sustained in the architectural designs proposed within H2020 VITAL research project, this paper presents an experimental proof of concept (PoC) of a satellite-terrestrial integration solution that builds upon software-defined networking (SDN) technologies for the realization of end-to-end traffic engineering (E2E TE) in mobile backhauling networks with a satellite component. A laboratory test bed has been developed and validated, consisting of a small-scale private mobile network with a backhaul setting that combines Ethernet-wired links, a satellite link emulator (OpenSAND), OpenFlow switches, and an OpenFlow controller running the network application for E2E TE. Provided results show the operation of a E2E TE application able to enforce different traffic routing and path failure restoration policies as well as the performance impact that it has on the mobile network connectivity services.Peer ReviewedPostprint (author's final draft

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    No full text
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    No full text
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    No full text
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación

    Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satellite-terrestrial mobile backhauling

    No full text
    This is the peer reviewed version of the following article: Mendoza, F, Ferrus, R, Sallent, O. Experimental proof of concept of an SDN‐based traffic engineering solution for hybrid satellite‐terrestrial mobile backhauling. Int J Satell Commun Network. 2019; 37: 630– 645, which has been published in final form at https://doi.org/10.1002/sat.1303. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingSatellite networks are expected to be an integral part of 5G service deployment. One compelling use case is mobile backhauling, where the exploitation of a satellite component can improve the reach, robustness, and economics of 5G rollout. The envisaged availability of new satellite capacity, together with the development of better integration approaches for the provisioning and operation of the satellite component in a more flexible, agile, and cost-effective manner than done today, are expected to revamp such use case within the 5G ecosystem. In this context, sustained in the architectural designs proposed within H2020 VITAL research project, this paper presents an experimental proof of concept (PoC) of a satellite-terrestrial integration solution that builds upon software-defined networking (SDN) technologies for the realization of end-to-end traffic engineering (E2E TE) in mobile backhauling networks with a satellite component. A laboratory test bed has been developed and validated, consisting of a small-scale private mobile network with a backhaul setting that combines Ethernet-wired links, a satellite link emulator (OpenSAND), OpenFlow switches, and an OpenFlow controller running the network application for E2E TE. Provided results show the operation of a E2E TE application able to enforce different traffic routing and path failure restoration policies as well as the performance impact that it has on the mobile network connectivity services.Peer Reviewe

    Prevención de drogodependencias en la Comunidad de Madrid : guía de materiales y recursos

    No full text
    Ofrece a los maestros una guía de materiales para abordar la prevención de las drogodependencias dentro del aula, además es un vehículo conector entre la oferta y la demanda que permite la sistematización y valoración de los materiales y recursos existentes. Es una herramienta útil para obtener información sobre los programas, materiales y recursos disponibles en materia de prevención de drogodependencias y sirve de orientación para la toma de decisiones respecto a la selección de aquellos recursos más adecuados a la situación concreta y a la intervención educativa y preventiva que se pretende. Se han seleccionado 49 materiales de los cuales se ha elaborado una ficha exhaustiva con el siguiente esquema común : título, autor, editor, datos de edición y distribución, características físicas, idioma, destinatarios, descripción y observaciones.MadridBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín, 5; 28014 Madrid; Tel. +34917748000; [email protected]

    Impacto de la innovación y la gestión de las organizaciones

    No full text
    En el presente libro se articulan diferentes temáticas que son ejes centrales de la investigación en Colombia. Algunas de ellas son desarrollo humano, ciencia y tecnología para las organizaciones, nuevos modelos de negocio y economías emergentes, retos y tendencias para el emprendimiento. Los capítulos se articulan en tres líneas, a saber, línea 1. Gestión en eje Centro-Bogotá; línea 2. Investigación en zonas colombianas; y línea 3. Impacto de la UNAD en la región. Es así como este libro muestra el resultado de diferentes investigaciones que buscan brindar soluciones a las problemáticas regionales en aras de construir un mejor país de forma colectiva desde la gestión de las organizaciones y el desarrollo regional, donde involucren los diferentes actores sociales y expertos de cada región en la construcción de los diferentes escenarios de los sectores económico, social, cultural, tecnológico, político y ambiental

    II Congreso internacional en educación física, recreación, deporte y actividad física. “Innovación y tendencias” - Memorias

    No full text
    El II Congreso Internacional de Educación Física, Recreación, Deporte y Actividad Física: “Innovación y Tendencias“ y el II Encuentro de Egresados del Departamento de Cultura Física de la Universidad de Córdoba se realizó en la ciudad de Montería, capital del Departamento de Córdoba, Colombia, como iniciativa del Grupo de Investigación en Ciencias de la Actividad Fisica y la Salud –GICAFS- del Departamento de Cultura Física, perteneciente a la Facultad de Educación y Ciencias Humanas de la Universidad de Córdoba, como muestra hacia la comunidad académica y la sociedad en general de la responsabilidad ética, social y profesional, para aportar a la construcción de tejido social, atendiendo a las recomendaciones del plan decenal del deporte, la Educación Física, la Recreación y la Actividad Física 2009-2019 (COLDEPORTES, 2009).Edición 201
    corecore